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feature sequence Steps

1. Obtain outputs from the 8-th Transformer layer of the student
2. Create the frame similarity matrix

3. Apply the minimum cut algorithm to the frame similarity matrix
4. Average pooling within segments

5. Two-step clustering on averaged representations

Problem

e Given the speaker ID X and the student’s final softmax category Y, we
observed that 61% of the entropy (uncertainty) of X was reduced after
observing Y on the Librispeech test set, indicating that the model
learns to predict speaker identity rather than linguistic content

4. Results

Findings

e In HUBERT, frame similarity is limited to short spans

e Self-Distillation HUBERT obtains larger structures, but their
representations are relatively speaker dependent

e Our block structures are the clearest, and their boundaries
roughly match the references

Example of frame similarity matrices Results of syllable discovery and speaker identification
| Model Syllable segmentation Syllabic unit quality Speaker
|dentification
Precision |Recall |F1 R-value |Syllable |Cluster |Mutual |Accuracy|
purity purity info.
HUBERT[1] 51.4 31.4 39.0 50.1 33.1 28.4 3.54 67.2
VG-HUBERTI[Z] 65.3 64.3 64.8 70.0 53.4 43.6 4.66 37.4
Self-Distillation 64.3 71.0 67.5 70.7 94 .1 46.2 4.76 47.6
HUBERTI[3]
Ours 73.3 67.6 70.3 4.6 59.4 44 .5 5.08 26.6
ablation study
, Ours 64.3 65.1 64.7 69.8 59.1 42.9 5.06 32.8
T -frame-wise BYOL
HuBERT [1] Self-Distillation HUBERT [3] Ours +framemise DINO
Red lines indicate reference syllable boundary ours 70.0 73.8 71.9 75.5 55.7 45 7 4 91 28 9
-frame MSE
+CLS MSE

In our DINO variant, segmentation scores dropped, likely because the classes
activated in the softmax were fewer than the number of syllables

e With a sentence-level MSE using the CLS token, the speaker dependence of

speech features slightly increased, and the syllabic unit quality degraded
Overall, our proposed method performs the best, validating the efficacy of
speaker disentanglement in syllable discovery
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