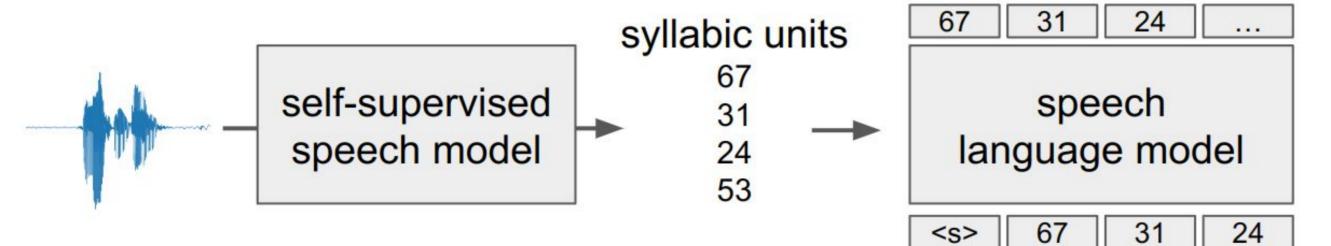
P6-13-SLP Self-Supervised Syllable Discovery Based on Speaker-Disentangled HuBERT

Ryota Komatsu Independent Researcher

1. Motivation

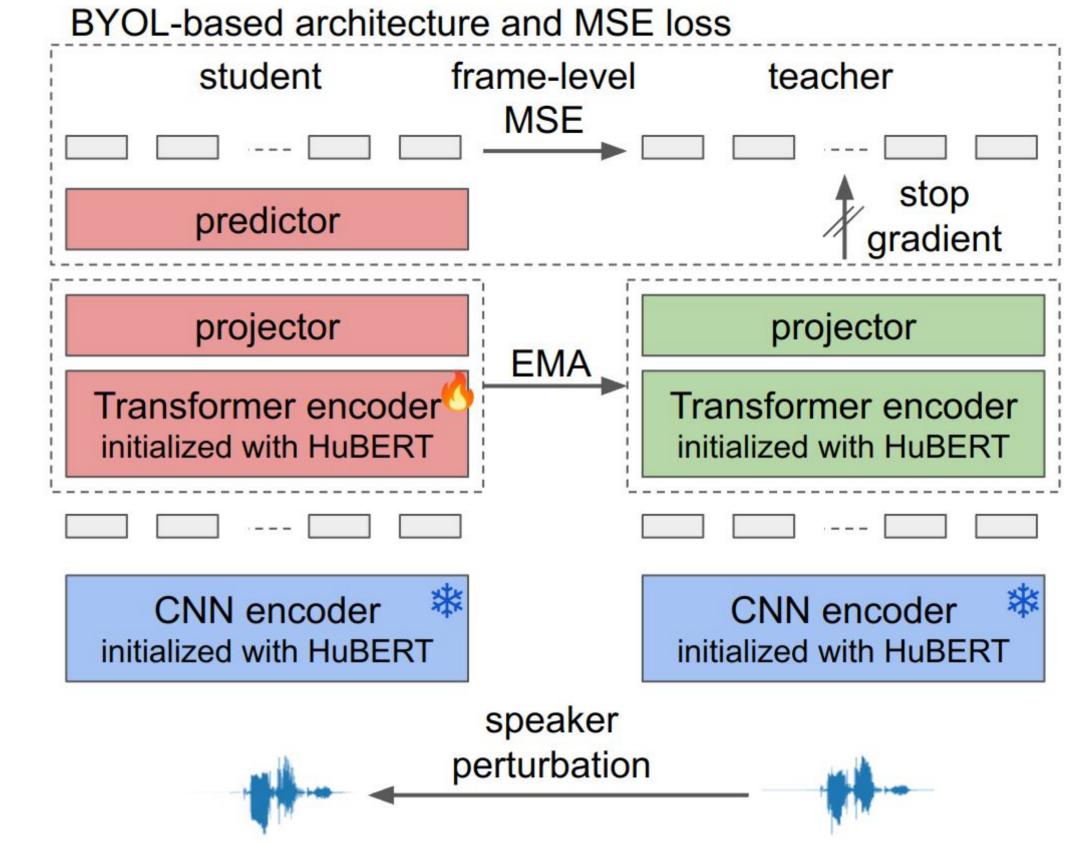
- Self-supervised learning (SSL) of speech representations has become essential for extracting meaningful features from raw audio
- Hidden units obtained by discretizing learned representations highly correlate with linguistic units, e.g., phones, syllables, and words
- By utilizing them as pseudo-transcripts for raw audio, we can develop textless models, including speech language models
- Compared to phonetic units, coarse-grained syllabic units have an advantage in token frequency and potentially enhance semantic understanding



Takahiro Shinozaki Tokyo Institute of Technology

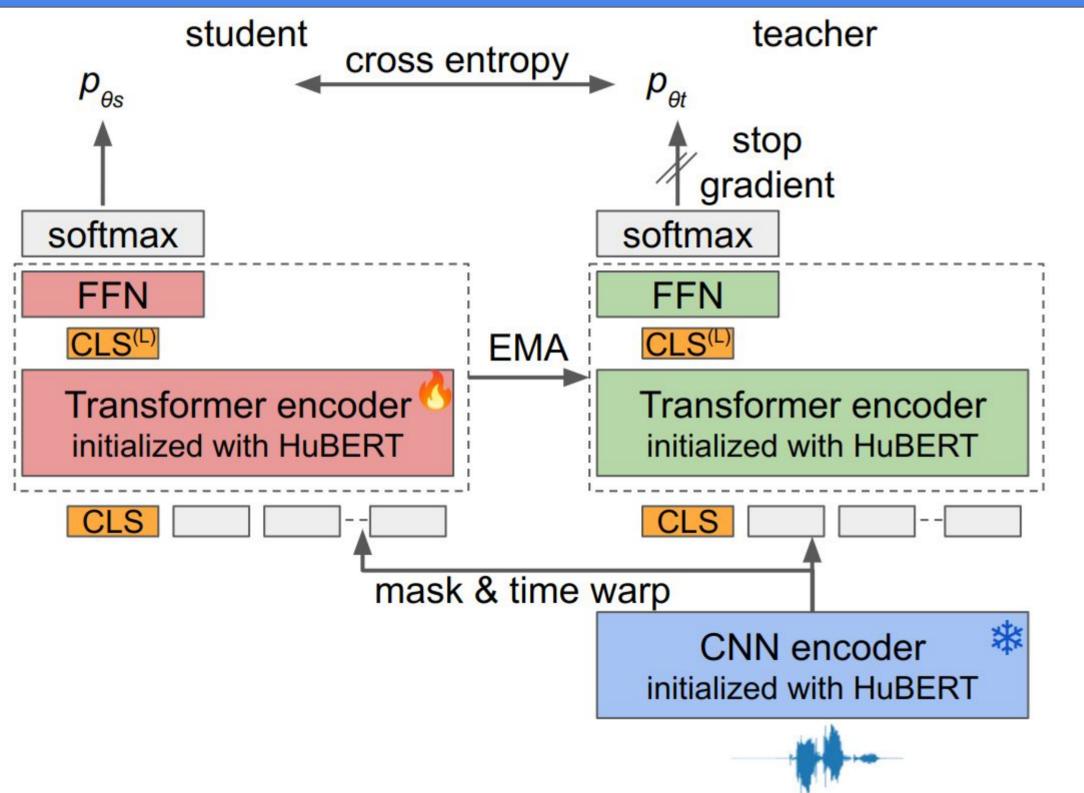
codes & models

Self-supervised fine-tuning



3. Proposed method

2. Baseline method: Self-Distillation HuBERT [3]



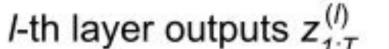
Main points

Syllabic organization naturally emerges within outputs from the student's intermediate (9-th) Transformer layer through sentence-level self-distillation (DINO) fine-tuning of the pretrained HuBERT
Sentence-level representation is aggregated through self-attention layers using a special CLS token concatenated with the input speech feature sequence

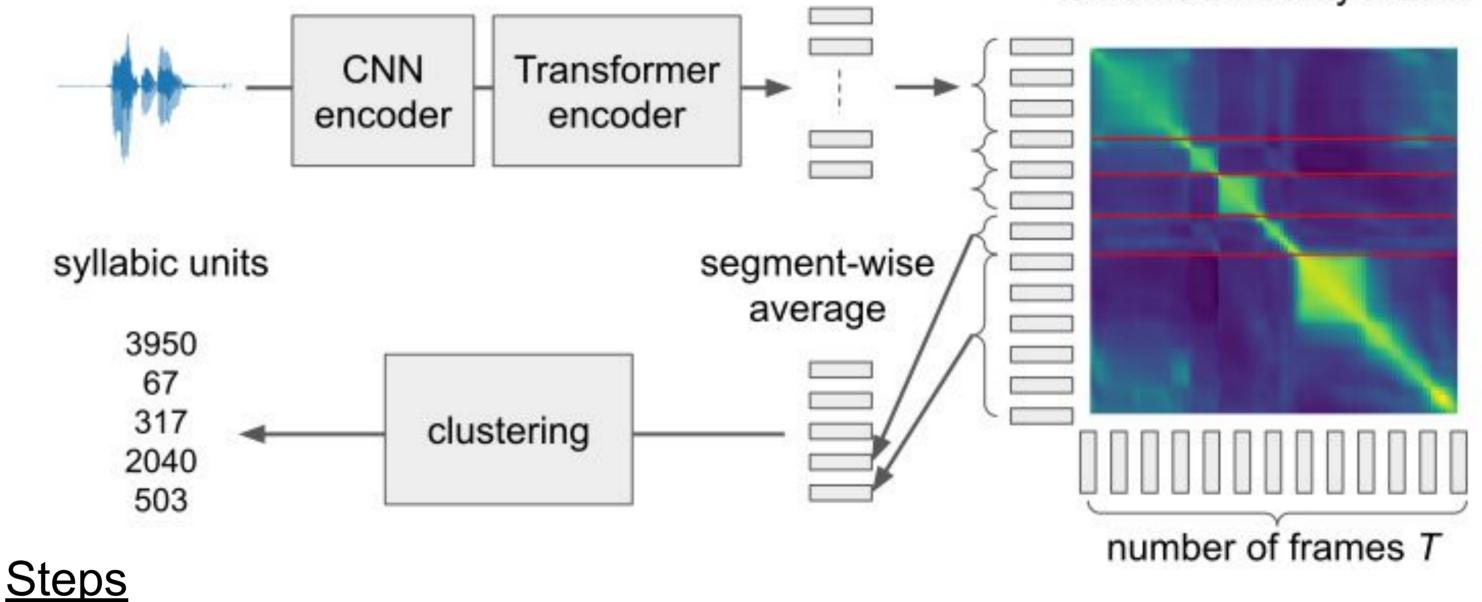
Key idea

- Following **BYOL**, a SSL framework, we adopt the MSE loss and incorporate a predictor in the student. This approach has shown superior performance compared to DINO in image segmentation
- To prevent the model from learning speaker identity with the CLS token, we remove it and compute the loss at the frame-level
- We constrain the model to extract consistent features between the original speech and its speaker-perturbed version

Unit segmentation



apply min-cut algorithm to frame similarity matrix



Problem

 Given the speaker ID X and the student's final softmax category Y, we observed that 61% of the entropy (uncertainty) of X was reduced after observing Y on the Librispeech test set, indicating that the model learns to predict speaker identity rather than linguistic content

. Obtain outputs from the 8-th Transformer layer of the student

- 2. Create the frame similarity matrix
- 3. Apply the minimum cut algorithm to the frame similarity matrix
- 4. Average pooling within segments
- 5. Two-step clustering on averaged representations

4. Results

Example of frame similarity matrices Results of synamical sy

Results of syllable discovery and speaker identification

Model	Syllable segmentation				Syllabic unit quality			Speaker Identification
	Precision	Recall	F1	R-value	Syllable purity	Cluster purity	Mutual info.	Accuracy↓
HuBERT[1]	51.4	31.4	39.0	50.1	33.1	28.4	3.54	67.2
VG-HuBERT[2]	65.3	64.3	64.8	70.0	53.4	43.6	4.66	37.4
Self-Distillation HuBERT[3]	64.3	71.0	67.5	70.7	54.1	46.2	4.76	47.6
Ours	73.3	67.6	70.3	74.6	59.4	44.5	5.08	26.6

ablation study



Red lines indicate reference syllable boundary

<u>Findings</u>

- In HuBERT, frame similarity is limited to short spans
- Self-Distillation HuBERT obtains larger structures, but their representations are relatively speaker dependent
- Our block structures are the clearest, and their boundaries roughly match the references

abiation study									
Ours -frame-wise BYOL +frame-wise DINO	64.3	65.1	64.7	69.8	59.1	42.9	5.06	32.8	
Ours -frame MSE +CLS MSE	70.0	73.8	71.9	75.5	55.7	45.7	4.91	28.9	

- In our DINO variant, segmentation scores dropped, likely because the classes activated in the softmax were fewer than the number of syllables
- With a sentence-level MSE using the CLS token, the speaker dependence of speech features slightly increased, and the syllabic unit quality degraded
- Overall, our proposed method performs the best, validating the efficacy of speaker disentanglement in syllable discovery

[1] W.-N. Hsu *et al.*, "HuBERT: Self-supervised speech representation learning by masked prediction of hidden units," TASLP, vol. 29, pp. 3451–3460, 2021.
[2] P. Peng *et al.*, "Syllable discovery and cross-lingual generalization in a visually grounded, self-supervised speech model," in Proc. Interspeech, 2023, pp. 391–395.
[3] C. J. Cho *et al.*, "SD-HuBERT: Sentence-Level Self-Distillation Induces Syllabic Organization in Hubert," in Proc. ICASSP, 2024.